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A discrete procedure for solving asymptotic equations 
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Department of Applied Mathematics and Theoretical Physics, Queens University Belfast, 
Belfast, Northern Ireland, UK 

Received 16 August 1993 

Abstract. A method is described for solving the close-coupling equations that arise in non- 
relativistic scattering theory in the asymptotic region where the scattered particle is far 
removed from the residual atom or ion. Typical results are presented that indicate the 
convergence and accuracy of the method. 

1. Introduction 

In performing, scattering calculations a considerable part of the computational effort 
arises from evaluating solutions in the asymptotic region defined as that region wherein 
only the long-range r-“ coupling between the scattering channels is significant. A variety 
of methods for generating solutions have been used (Norcross 1969, Crees 1981, Crosk- 
ery et a1 1982, Baluja et a1 1982). In particular, Rudge (1985) developed a variational 
procedure that facilitates this task. This method works very well for scattering by neutral 
species, and a computer code that implements it has been written (Rudge 1984). Later, 
a discrete procedure was developed for solving coupled integrodifferential equations 
(Rudge 1989) which can be used in scattering calculations to describe the inner scatter- 
ing region. The purpose of this paper is to indicate that a very similar technique can 
be used to solve the asymptotic equations and that this new method applies equally 
well to the scattering by neutral or charged species. 

2. The scattering equations 

We consider non-relativistic scattering in an N-channel representation. Let 

d 2  
dr2 

D,=-+ k:+ 2Zr-’ -I7(&+ l ) F 2  

and define the operator matrix 

LE’,,=diag(D,). 

The asymptotic equations to be solved are 

LE’oFj+ YFj=O 
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In (4) the uI are NX N matrices that represent the coupling between the channels and 
in (3) the Fj are solution matrices that are specified by their form in the region of 
large r. 

On defining 

( 5 )  

(6) 

q .= Zk:' 
J J  

and 
Oj=  k,rT ljx/2+ qj  In(2ky) + arg T(l,+ 1 -iq,) 

the asymptotic forms are 

[F,+iFj],k N 6,k[k;1'2 exp(iO,)] 
r-m (7) 

for l a < N  and l<kSN,,  where No i s  the number of open channels (for which kj 
>O). Let N.=N-N, be the number of closed channels (k;<O)- Then we can also 
obtain N, solution vectors specified ,by 

[FOIIL ,zw J,&xp[-kjr+ ?iln(r)ll (8 )  

for 1 < j < N  and 1 <k<N. where kj=Ik/I1'*. There are thus 2N0+Nc solution vectors 

F = [FLFzF~I (9) 
that satisfy 

F"+[Vo+ Y]F=O 
where 

V0=diag[k~+2Zr-'-f,(l,+ l)r-']. 

Since the matrices V, and V are symmetric, it follows that 

p" + It[ V,+ VI = 0. 

From (10) and (12) and the boundary conditions (7) and (8) it follows that the 
Wronskian matrix is 

W = F F - F ' F =  -I 0 0 . (13) 

In (13) the first two rows and column blocks contain No rows or columns, and the 
third row and third column are of length N,. 

Let 9 be an N x N matrix of solutions in the range O<r< RI that satisfies g(0 )  = 
0. Then there are N x No matrices C and X such that 

g C =  F1 +[F,F3]X (14) 

P ' C =  Fi+[F2F3]'K. (15) 

[:::I 
and 
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Hence the matrix K, from which all the scattering parameters may be calculated, is 
given by 

RFI - F I  = { [ F z F , ]  -R[FzF3]'}K (16) 

R=F(.F')-I.  (17) 

where 

3. The computational procedure 

Let F be one of the solution vectors and let p be a row of basis functions of length Nr. 
We write 

9, 0 ... 

0 0 ... p 

where the a, are vectors that contain Nr coefficients. In order to obtain a solution we 
select in the range R, <r<R2  a set of points vj, 1 < j < N p ,  called the collocation points, 
and set 

z 0 F ( r j )  + YF(rj) = 0 (19) 

[S'&'(r,)+ YQ(r,)]a=O. (20) 

@(&)a = F(Rd (21) 

Q'(R2)a=F'(Rz). , (22) 

which implies the linear equations 

In addition, there are boundary conditions 

and 

This gives N x  ( N p + 2 )  equations for the N x  Nr coefficients a. Let A denote the matrix 
that contains the 2N0+ N. solution vectors corresponding to the boundary conditions 
(7) and (8). Then we see that 

In general, the number of rows exceeds the number of columns, in which case we need 
to solve the first 2Nequations exactly and the remainder using a least squares criterion. 

On writing the first 2N rows of the left-hand side matrix in (23) by X, and the 
remainder by X,, we find that we need to solve the equations 
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and the elements of A are Lagrange mulfipliers. For some cases Ihe solution of the 
linear equations (24) can proceed efficiently by Gauss elimination. For a problem that 
contains, say, 20 non-degenerate channels, the matrix in (24) can be about 4000 x 4000. 
The direct application of the method by simply computing the matrix and then using 
Gauss elimination can then impose a substantial computing burden both in terms of 
time and storage. However, we note that the problem is structured in such a way that, 
although the matrix X i s  not sparse, an iterative method can be used. In this method 
we require to multiply an arbitrary vector by X. Since X, contains blocks of the form 
UI;l(V,l V ) a j ,  where UIj=UI(rr), we see that the essential products are of the type UIu 
and &w where U and w are arbitrary vectors of the appropriate dimension and UI 
contains the blocks UIj. If the first N x Nf elements of v are written 

U =  

then 

[@VI,- I)Nfk=@$’k (27) 

where q,=q(r/). On defining I = ( p - l ) N f + q  it can be seen that 

where k = ( j -  l ) N + p .  Hence in the iterative method the only arrays that need to be 
stored are those for qJ, qy and V, and the matrix X need never be calculated explicitly. 
This considerably reduces the amount of storage required. 

4. The choice of basis 

Let 

Sj= [k: + 2Zr-I - lj(h+ 1)r-2]’/2 dr s 
where the constant of integration is chosen so that 

‘/,-a, ‘J  

(cf. Seaton and Peach 1962). Then, (7 )  can be written 

[ F z + ~ F I I , ~  ,,=Sjk[S~-’/’exp(iS,)] 
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to the accuracy of the JWKB approximation. This suggests the choice of functions 

where, for open channels, 

In (32) M is the number of non-degenerate channels and the S, are the action integrals 
that have distinct kj values. In (33) t is  a vector, of dimension N,, that contains suitable 
amplitude functions. For R3 <r<RZ we have chosen these to be Chebyshev polynomials 
in r-', and for RI <r<R3 to be the same polynomials in the variable r. For the closed 
channels we have chosen 

where y=k;'. In chobsing the collocation points there are two 'natural' choices. One 
choice is the Chebyshev zeros which, in the range -1 < x <  1, are given by 

The other choice that we have used is the Chebyshev-Lobatto set given ,by 

I= [ h Q 2 .  , . @MI (32) 

qj= [cos(~,)t"sin(~~)i] .  (33) 

h= [ ry  exp(-kjr)?] (34) 

xj=cos[(2j- l)n/2N] 1 Q'< N. (35) 

xJ=cos[( j- l)n/(N- I)] 1 <j<N. (36) 

5. Illustrative calculations 

We consider two typical test cases. The first is a six-channel case with Z=O that occurs 
in the calculation of electron-hydrogen atom scattering with three open and three closed 
channels. The second is a five-channel case with Z=l  that arises in electron-Ca+ 
scattering with three open and two closed channels (cf Norcross 1969). We refer to 
these as case 1 and case 2, respectively. We define the discrepancy matrix A by 

F"+[Y,,+ Y]F=A (37) 
and take two measures of the size of A. We define 

61=Max(lAol) 
y 

and 
6 f = N - 2  1 (Av)'. ' (39) 

4 

In figure 1 we show, for case 1, 6, and 6, as a function of basis size in the outer 
region (R3<r<R2).  In figure 1, the upper curves display 6 ,  and 6* for N,=4 and the 
lower for N ,  = 8. In figure 2 we illustrate the effect of using the two choices of collocation 
points (35) and (36) in the inner region ( R , g r < R 3 )  for case 1. In both these cases, 
the number of Chebyshev polynomials is kept constant at six. In figures 3 and 4 the 
same comparisons are made for case 2 in which Z= 1. 

6. Concluding remarks 

It can be seen clearly from figures 1 and 3 that high accuracy can be obtained using a 
relatively small number of basis functions. The use of four polynomials gives an error 
of about lO-'~for the Z= 1 case and of about IO-* for the Z=O case. This decreases 
to about IO-'' and respectively, when the number of basis functions is doubled. 
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Figure 1. Case I:plotofS, (fullline)andSl(brokenline)asafunctionofrforR,6rCR~ 
Upper curves N,==4, lower curves N , = 8 .  
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Figure2. Case 1:plot of& (fullline)and6~(brokenline)asafunctionofriorR1SrCR~. 
Upper curves using the set (35). lower curves using the set (36). N,=6. 
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Fignre3. Case2:plot 0161 (fullline)andSl(brokenline)asafunctionofrlorR,4r4R,. 
Upper curves N,=4,  lowerculves N,=8. 
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Figure4. CaseZ:pIotofS, (fullline)andSr(brokenline) asafunctionofrlorR,<rgR,. 
Upper curves using the set (39,  lower curves using the set (36). N , = 6 .  
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In figures 2 and 4 we illustrate the effect of the two choices of collocation points. 
It can be seen from figure 2 that in the Z=O case the use of the Chebyshev-Lobatto 
points (36) gives an error that is smaller (by two orders of magnitude) than that 
obtained using the Chebyshev zeros (35). Figure 4, however, shows the opposite effect 
for the Z= 1 case in which higher accuracy is achieved by using the Chebyshev zeros. 

We conclude that the method is both stable and accurate for both sets of collocation 
points. For a given basis size the Z=O results are superior to those obtained for Z#O. 
This is probably due to the difference in the accuracy of (33) in the two cases. 
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